Coordinating human and machine intelligence to classify microblog communications in crises

نویسندگان

  • Muhammad Imran
  • Carlos Castillo
  • Jesse Lucas
  • Patrick Meier
  • Jakob Rogstadius
چکیده

An emerging paradigm for the processing of data streams involves human and machine computation working together, allowing human intelligence to process large-scale data. We apply this approach to the classification of crisis-related messages in microblog streams. We begin by describing the platform AIDR (Artificial Intelligence for Disaster Response), which collects human annotations over time to create and maintain automatic supervised classifiers for social media messages. Next, we study two significant challenges in its design: (1) identifying which elements must be labeled by humans, and (2) determining when to ask for such annotations to be done. The first challenge is selecting the items to be labeled by crowdsourcing workers to maximize the productivity of their work. The second challenge is to schedule the work in order to reliably maintain high classification accuracy over time. We provide and validate answers to these challenges by extensive experimentation on realworld datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS

People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Emotion Classification in Microblog Texts Using Class Sequential Rules

This paper studies the problem of emotion classification in microblog texts. Given a microblog text which consists of several sentences, we classify its emotion as anger, disgust, fear, happiness, like, sadness or surprise if available. Existing methods can be categorized as lexicon based methods or machine learning based methods. However, due to some intrinsic characteristics of the microblog ...

متن کامل

Explain the theoretical and practical model of automatic facade design intelligence in the process of implementing the rules and regulations of facade design and drawing

Artificial intelligence has been trying for decades to create systems with human capabilities, including human-like learning; Therefore, the purpose of this study is to discover how to use this field in the process of learning facade design, specifically learning the rules and standards and national regulations related to the design of facades of residential buildings by machine with a machine ...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014